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ABSTRACT

Continuous and discrete wavelet transforms are discussed. Recursive generations of

compactly supported wavelet time functions are described. Haar, Daubechies, and complex

modulated Gaussian wavelets are utilized to analyze phase shifts in signals with noise.

Keywords: Wavelet transform, multiresolution time-frequency anz'lysis, phase-shift-key.

compactly supported wavelets, complex modulated Gaussian wavelets.
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1. INTRODUCTION

We have investigated several time-frequency decomposition techniques and their

applications in the detection and analysis of digitally modulated signals [10], [14], [13]. In this

report, we will specifically discuss wavelet decompositions and present a few preliminary results.

The oOL. particular digital modulation that we consider in here is binary phase-shift-key

(BPSK) signal, which is a sinusoid modulated by a baseband rectangular data waveform. Over a

duration of one binary data bit, the phase of a BPSK wave is either 0* or 1800 depending on the

value of the data, which is either +I or -1. For example, a wave with data rate 9600 bps can

change phase every 1/9600 seconds. In tactical communications using direct-sequence spread-

spectrum (DS/SS) [11], the corresponding spread BPSK wave can change phase N times faster,

where N is the spectrum ,Tpreading factor. Since BPSK and its extensions (such as QPSK and

OQPSK) are the most predominant modulation formats used in practice, there are interests in

developing efficient methods for detecting the phase shifts under various channel and noise

scenarios. Previous research efforts have used cycio.tationarity [61 and ambiguity t,"ct n with

specific kernel as the smoothing function [23], [13).

In Chapter 2, we will discuss the so-called continuous wavelet transform (CWT). In

Chapter 3, we will discuss the discrete wavelet transform (DWT) and the computations of

orthonormal compactly supported scaling and wavelet functions on the dyadic numbers. In

Chapter 4, we use the wavelet time-frequency decomposition techniques to detect ±1 800 phase

shifts in noise. A few concluding remarks are given in Chapter 5.
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2. CONTINUOUS WAVELET TRANSFORM

The continuous wavelet transform (CWT) of a IL2(IR) signal x(t) is defined as [8], [2], [3]:

X(t, a) = j x(u) •* du
(2.1)

where W(t) is the wavelet function," * "denotes complex conjugation, and a > 0. The scaling

factor "a" in (2.1) is taken to be power of 2 in this report, i.e., a = 2-m, for in = 0, 1, 2, 3 ,

The inverse transform is given by:

x(t) = I X(v, a) I 4(-v) dadv

fa a a (2.2)

where the constant
cv f I y(f) 12 d

Jfl (2.3)

must be finite. This implies that the wavelet function must satisfy

'(f) = 0, i.e., ( w(t) J :- 0 (2.4)

Thus, the wavelet function is bandpass type with Fourier transformn 'P(f) = 0 at f = 0;

equivalently, the area under the wavelei function is exactly 0. Note that we can rewrite (2.1) a.

X(t, a) = a Jf X(f) hf*(af) exp(j2itft) ,•f (2.5)

in terms of the Fourier transforms. The CWT can be computeu via (2.1) or (2.5).

The CWT X(t, a) represents a decomposition of x(t) into a time-scale plane Usually,

X(t,a) is graphed against time t and the log scale log2(a). The CWT can be regarded as a constant-

Q bandpass filter since (2.1) is a convolution of two time functions. The linear bandpass filter

impulse response at level m is

Win(t) = 2m/2 W*(2mt) (2.6)

If we define "fm" as the r.m.s. center frequency of the passband by

J (f - fn)' IP,,(f)12 df = 0 (2.7)



then we have

fm = 2m fo and Gm = 2 m aj (2.8)

where f0 is the r.m.s. center frequency and 2a 0 is the r.m.s. bandpass band.width of the basic

wavelet function W(t). The ratio of fm to cam is always equal to

fm =f1
Gm '00 (2.9)

which is constant for all decomposition level m. As the level of decomposition (i.e., m) increases,

the filtering function Nrw,(t) of (2.6) becomes narrower in time. Th,,.,..... , n, tiw ..... ct

decompsition therefor, increases with m, On the other hand, the r.m.s. bandpass bandwidth

(i.e., 2am ) of W,n(t) ir. creases exponentially with m, and therefore the frequency-resolution of the

wavceet decomposition is better for smaller m. Unlike the classical time-frequency transforms

such as the st.ort-time Fourier transform (STFT') or the Gabor transform (GT) [ I ], [9], which do

not scale the filtering function and and have constant time-resolution at all frequencies, the wavelet

transform has higher time-resolution at higher frequency. One can observe that for CWT, its

time-resolution is increasingly better at higher frequencies, while its frequency-resolution is

increasingly better at lower frequencies.

We will use the complex modulated Gaussian wavelet function:

y(t) = expoj2nrfyt) exp(-t./2cT2)

= cos 2ntfyt exp(-t 2/2a 2 ) + j sin 2%fWt exp(-t 2/22) (2.10)

Of course the Fourier transform of a Gaussian function is a Gaussian function, and the complex

exponential time function exp(j2rfwt) will cause a shift by fW in frequency in the Fourier

tra,,sform. It is then possible to choose fW big enough so that for complex modulated Gaussian

wavelet we have

TM (f=O for f<0 (2.11)

Condition (2.11) is especially desirable when the wavelet is used to analyze sinusoids. For

example, let x(t) = cos 2,tfct, for t in a very large, yet finite, window. Using (2.5), we have

X(t, a) = T exp(j2nfct) qP*(afc) + N exp(-j2rfct) •F*(--afc) (2.12)
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If 1'(f) satisfy (2.11), then the second term in (2.12), which is a contribution by the impulsc

S(f+fc), drops out. It follows that the phase of the resulting CWrT X(t, a) will nicely reveal the

center frequency of the cairier wave x(t) = cos 27rf(t. For other stationary or non-stationary

signals, magnitude and phase of X(t, a), with NI(t) being the complex Gaussian wavelet, will reveal

the frequency as well as the time behaviors of the signal.

We also remark that we can multiply a suitable baseband function b(t) with the complex
sinusoid exp(j27tfyt) to obtain a wavelet function:

W(t) = exp(j27tfft) b(t) (2.13)

so that its Fourier transform is zero on the negative frequency axis. The above construction yields
a large class of potentially useful wavelet functions. The preference to use the Gaussian envelope
exp(-t 2/20 2) is due to the fact that the Gaussian function achieves the lower bound ir, the

uncertainty principle:

At Af > 4 12.14)47t

with equality, where At is the r.m.s. time-spread and Af is the r.m.s. frequency-:;pread of the

signal [20]. Note that two pulses in time can be discriminated only if they are more than At

seconds apart in time, and two sinusoids can be discriminated only if they are more than Af apart

in frequency. Equation (2. 14) states that one can only trade time-resolution for frequency-

resolution, or vice versa.

Using CWT, the frequency-resolution Af is in the order of crm = 2m 00. Viewing the

CWT X(t, a) in a time-scale plane allow us to look at the signal at different scale (i.e., dif. -nt
frequencies in the passband of 2Grm Hz wide around the center frequency fm). The CWT indeed

presents a multiresolutional analysis of the signal, as if the signal is being processed by a sank of

filters with logarithmically spaced centered frequency fm but constant band'vidth to frequency ratio

of 2 cre/fr = 2ao0fo. These relationships are best visualized by considering the complex modulated

sinc wavclet function:

1t
xy(t) = exp(j2inf~t) •f• sinc (2.15)

Sw
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which has a rectangular passband with bandwidth eq al to 2aO = W. Thl center frequency of y(t)

is exactly equal to fy. We also propose to use this complex modulated sinc wavelet to analyze our

signals.

Computation of X(t, a) could be lengthy and expensive. In practice, however, we only

have a finite-length sampled sequence: x(nT), n = 0, 1, 2 ........... Ns-1, where Ns is the
sequence length and the sampling rate is at least equal to the Nyquist rate, which is twice the

highest frequency component in the signal x(t). We will only compute X(t, a) at the sampling

times t = nT and at levels m = 0, 1, 2,...... [log2 NJ]. The integral of (2.1) is now reduced to a
finite summation and the computation burden is greatly relieved. In thic discrete-time

approximation of the CWT, we essentially perform a multiresolutional analysis of an auxiliary
,.gnal xa(t), which is a piecewise linear function constructed by joining two consecutive sampled

points x(nT) and x((n+l )T) with a straight line. Towards this end, the CWT of (2.1) produces a

total of Nmax = [log2 NJ + I snap-shots of the auxiliary signal via bandpass filterings.

The complex modulated Gaussian wavelet of (2.10) is a nice analytical function. It is
continuous and differentiable everywhere. Perhaps one drawback is that it has an infinitely span

and therefore it is not a causal filter impulse response. In practice, however, this mishap can be

resolved by using a wavelet with sufficiently fast decay over the processing window so that it can
be regarded as of finite span. We select the Gaussian wavelet because of two additional reasons:

(a) tunability; and (b) bandwidth adjustability. By varying the modulating frequency f1, we can
place the passband anywhere on the frequency axis. Second, by altering a, the bandwidth of the
wavelet function v(t) can be selected at will. Each (fy, Y) selection will result in a

multiresolutional analysis that consists of Nmax snap-shots of the signal. A systematic selection
of (fW,, a) will allow a thorough analysis of the signal at all possible time-resolution and

frequency-resolution levels.

We show an example of a complex modulated Gaussian wavelet function W(t) with fy = 8

Hz and a = 0.12 in Figure 2.1. This value is selected so that all the energy in the wavele, is

essentially contained in the compact time interval [-0.5, 0.5] for presentation purpose. In the left

column of Figure 2.1, the real part, imaginary part, magnitude, and phase of the wavelet are

depicted. In the right column, the energy spectral densities (which is magnitude square of the
Fourier transform) of the real part, imaginary part, and the wavelet function itself are shown. Note

that this complex wavelet has no spectral component in the negative frequency axis, a desirable

property as discussed previously. The spectrum is centered around f = fy = 8 anC? ýhe r.m.s.
passband bandwidth of NI(t) is 2a = 0.24. In processing a given signal x(t), the signal is first
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normalized to be contained in the time interval [0, 1]; it is then decomposed by the analyzing

functions Im(t), with 4o(t) = y(t) contained also in the interval [0, 1].
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wave-real Pw real
I 0.04

0 .02-
-1 -- • - --- - 0 -
-0.5 0 0.5 -40 -20 0 20 40

waveimag Pwimag

10.04.0A A
-0.5 0 0.5 -40 -20 0 20 40

waveabs

I/0.156/ "

0-
-0.5 0 0.5

waveangle Pww

0.

-200 -0. ..
-0.5 0 0.5 -40 -20 0 20 40

time frequency

Fig. 2.1 Complex modulated Gaussian wavelet function W(t): time-domain functions and

energy spectral densities. fW = 8, a = 0.12.
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3. DISCRETE WAVELET TRANSFORM

In this section we will discuss an orthonormal decomposition of a signal x(t) using a

scaling/wavelet function pair, anC describe the so-called discrete wavelet transform (DWT)

algorithm using orthonornal wavy1et funoioi. [41, [16], [17], [18]. We will also discuss the

multiple-phase DWT, and generations of wavelet functions that have compact (i.e., closed and

bouihded) support.

3.1 Orthonormal Wavelet Decomposition

Co.•idei a nested sequence of closed subspaces {Vm; m a 2) in L 2(IR) such that

{0}=- "cV_2 cV_1C VOCV 1 cV 2 c. ( (3.1)

where (") Vm = {O} and E Vm = L 2(IR). One can find an unique scaling
m• 2 MEZ

(or averaging) function 0(t) such that {Imn(t); nE 2--

is an orthonormal basis of Vm where

Omn(t) = Ccm/2 4( (,mt - nT) (3.2)

by normalizing, dilating or contracting, and time-shifting 0(t). The value of T (>0).is arbitrary. As

is common in dyadic multiresolution analysis, we take a (*0,1) to be 2 in this repor..

The orthogonal projection, f a finite-energy deterministic function, x(t), onto the subspace

Vm is an approximation of that function at resolution level m. We can write:

Xm(t) = . b m,n(t)

ne Z

where

bm.n N < X(t), omn(t) > J X(t) 4,n (t) dt = ( x * om,0 )(n2-mT)

is a coefficient equal to the orthogonal projection of x(t) onto the basis function Om,n(t). Here, R(t)
= x(-t). Since {Vm) is a sequence of densed and nested subspaces, we have Xm(t) -- x(t) in



LV(R) as m - ox By dilating (when rr<O) or contracting (iJ>O) the saling function,

approximation for x(t) at any resolution level can be obtained by increasing the number of
coefficients exponentially with m. Although the set of functions f{mn(t); (m, n) a 22) spans

the-, entire space L 2(E), it is not a minimal set 5ecause the subspaces f{Vm) are nested; in
particular, Orm,n(t) and 02,k(0) are correlated for m * I. For many applications, for example in

image processing and compact coding, it is desirable to constnci an orthonormal multiresolution

basis for L 2(IR). Towards this end, let Vm = VI-I 9 Wmi-, where Wi..I is the orthogonal
complement of Vm-1 in, Vm. Consider V0 with {I (t-nT); n a Z) as its orthonormal basis. One

can construct a wavelet function W(t) from 0•(t) so that { y(t-nT); n a ) is an orthonormal basis

for W0 ; furthermore, {N rmn(t); n 6 o } = {2zn/2(2mt - nT); n a 2) is an orthonormal basis for

Win, and the entire set {Wm,n(t); (m,n) a •2} is an orthonormal multiresolution basis for L 2 (IR).

The relationship between the subspaces Vs and Ws is depicted in Fig. 3.1.

V Vv

V.. 2  W 1  V0  VI VWin_ Vm

)K2 W _J W 0 
W in.1

Figure 3.1 Subspaces Vs and Ws.

The orthogonal projection of x(t) onto the subspace Wm is the detail function at resolution

level M:dm(t) = I dmn Vm.. n(0,

nE Z

= Xrn+I(t) - x1n(t), dImn = x(t), Yrn"(t) > (3.4)

IN Ii--III I 
rll.l i
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This detail function constitutes the difference between the approximation function of x(i) at

resolution level m+1 and resolution level m. Thus, the coefficients fbm,n; n a 2 1 capture the

information about x(t) at resolution level m; while the coefficients {dm,n; n a Z I capture the detail

i~iformation going from resolution level m to resolution level m+l. Note that L 2(IR) = WM

and the Ws are mutually orthogonal subspaces. The sequences {b.n,n; n a 2) and {din,n; n a e 1

can be obtained directly through linear filtering of x(t) and then sample at time t = n2-mT (Fig.

3.2). Note that TN [m,0(-t)] yields a lowpass transfer function, while T [i 0 (-t)j is bandpass.

The wavelet decomposition filters im, 0(-t) can be interpreted as a parallel bank of banapass filters

(with overlapping passbands for adjacent resolution levels) that have constant size passband on the

logarithm scale.
tn-MT

t=n2-MT

t_- n 2-rnT

x(t)

Sm,0 (-t) bdin,

0

t = n

0

0

Figure 3.2 Orthonormal wavelet decomposition of the signal x(t).
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3.2 Discrete Wavelet Transform

There exist recursive (pyramidal) algorithrrms that efficiently compute the lower resolution

level coefficients {b,*,,; n 2) and (d2,n; n a 2) from the higher resolution level coefficients

{bm,n; n e ), 2 < M; conversely, the bs at the higher resolution level m can be computed from

,he bs at a base (lowest) resolution level M and all the ds at lower resolution levels 2, M < 2 <in

These pyramidal algorithms are. the so-called discrete wavelet transform (DWr) and they are

described by the block diagrams in Fig. 3.3.

(a) resolution

bm bm-],n

2x-downsample decimators
(keep every other samples)

(b) reconstruction

b bm ,nrn1,
1!n T2 h(k) ý +,

dm~

2x-upsample interpolators
(insert "zero" between each sample)

Figure 3.3 Discre:e wavelet transform.

In Fig. 3.3, h(k) is the impulse response of a discrete-time conjugate filter that satisfies

IH(&oT) 12 + I H(oT+n) 12 = 1 (3.5)
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and g(k) is the impulse response. of the mirror filter of H with

G(w) = exp(-jo) H*(.+-t) (3.6a)

and H(oT)G*(coT) + H(o)T + it)G*(coT + 7r) = 0 (3.6b)

One common choice of g(n) that satisfies (3.6) is g(n) = (-1)I-n h(1-n). The scaling function and

the wavelet function are orthogonal to each other and they are related by

0(2o)) = H(co) 0ow)

T(2o) = G(0) 4)((o) (3.7)

It follows that 4)(w) = i 1 H(2-m0); depending on the choice of H(co), it is possible to obtain

scaling function 0(t) that has good localization properties in both the frequency and the spatial

domain. The properties of H and G in Mallat's pyramidal algorithms can be derived without

reference to the multiresolution analysis [2].

Knowing the approximation function XM(t) and all the detail functions do(t) at resolution

level 2 = M, M+l, M+2 ..... m-2, m-I, is necessary and sufficient to construct the

approximation function Xm(t). The approximation of x(t) at resolution level m can be written as

xM(t) = I bm1 n Om,n(t) = I bMn Mn(t) + I X d 2 .n W•lW(t)

nEZ nEZ M 5- < m nflZ (3.8)

for any M 5 m. Without loss of generality (WLOG), one may set M = 0 and 0(t) = 00 ,0(t) (the

lowest resolution function physically realizable), and consider resolution level 0 < m _ mmax. In

this report, we leave M as an arbitrary integer. An example pair for 4P and y is the indicator

function on [0, T) and the Haar wavelet on [0, T):

SA/T- ,0 < t < T I 1/-f ,0 < t < T/2
(t) otherwise (t) /2 T (3.9)
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In gene--d, J ý(t) dt= 0?(0) = 4/T, 4(±-c) = 0, and f Wi(t) dt = T-(0) 0; the scaling
-0M -00

function 0(t) can be interpreted as a lowpass function while W(t) is bandpass. The Haar wavelet

forms the only orthonormal basis of compactly supported wavelets for which the associated
scaling function 0 has a symmetry axis. Also note that the Haar wavelet is not continuous so a

small error in the coefficients may cause a large fluctuation in the representation. Continuous and

n times differentiable wavelets are known [2].

The two equivalences in (3.8) are valid for finite-energy deterministic functions in
]L2(IR); they also make sense for finite-power deterministic function in L2(I), compact ICIR,

and for finite-energy and finite-power random processes w.p. I on compact IC: IR when compact

scaling function 0(t) and compact wavelet function W(t) are employed [7], [12].

3.3 Wavelet Conditions and Generations

It is clear that one needs to obtain the wavelet filter sequences h and Z in order to perform

the DWT. For the computation of the CWT in (2.1), however, one needs to know the wavelet
function W(t) explicitly. For compactly supported wavelets, knowing li and Z can produce the

time-functions 0(t) and W(t). In this section, we discuss the conditions for generating an

orthonormal scalingiwavelet pair, and give details for how to produce the time functions. This
section is important for the fact that it provides working knowledge for both the DWT and the

cwT.

3.3.1 Wavelet conditiorts

Consider the nested sequence of closed subspaces [Vm; m a 2 ) as discussed in section
3.1. The scaling function (at level m) Om(t) is in Vm, which in turn is a proper subset of the

closed space Vm~l. The basis of Vm+l is given by I0m+i,n(t); na Z!) = {2(m+I)/20 (2m41 t - n);

n a J), where we have set T = I WLOG. Since O•n(t) is also in Vm+l, we can represent it in

terms of the basis functions of Vm+1:

OM(t)- = < Om(t), Om+l,n(t) > Om+ln(t) (3.10)
n

where the inner product < 0(t), Om+l,n(t) > is given by

._ _ dl. _ I " "11 I I IM
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< Om(t). 0m+,1n(t) > = J On(t) *m+r,n+(t) dt

j 2m/20(2mt ) 2(m+l)/20*(2m+lt -n) dt.1

;!2 f 0(t) 0(2t-n) dt (3.11)

for real basic scaling function 0(t). Equation (3.11) describes exactly how two consecutive

subspaces Vm C Vm+i are correlated. Note that (3.11) depends only on the scaling function 0(t),

but not on the individual levels m and m 1; it holds for any value of m. By defining h(n) via the

following dilation equation:

h(n) = f 0(t) 0(2t -n) dt (3.12)

for all n, we can rewrite (3.10) as

Om(t) = "-2 1 h(n) 0m+ 1 ,n(t) (3.13)
n

The dilation equation o" (3.12) is the most fundamental equation in wavelet theory. One can

proceed along this line of argument and derive the DWT of Figure 3.3. For a scaling function 0(t)

that has a finite support, the number of solutions to (3.12) is finite, and so h ;s of finite length.

It can be shown that [16]:

f 0(t) dt = constant (3.14)

and WLOG we can take the constant to be 1. This implies that 4(f') = 1 at f = 0, which means that

the scaling function is an impulse response of a lowpass type filter. Integrating both sides of

(3.13) with respect to (w.r.t.) time t and letting m = 0 yields:

1 = I Xh(n) f2I/2 (2t-n) dt
n
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"-. h(n) (3.15)

Equation (3.15) is the first wavelet condition, which is a consequence of the nested nature of the

increasing subspace sequence {Vm). For orthonormal scaling function 0(t), I 0(t-nT); n C •) is

an orthonormal basis for V0, and therefore,

8(n) = < 0(t). 0•(t-n) >

= < 2 1 h(k) 0(2t-k), 2 • h(j-2n) 0(2t-j) >
k j

= 4 1 1 h(k) h(J-2n) 5(k-j)
k j2

= 2 1 h(k) h(k--2n) (3.16)
k

Equation (3.16) is Lhe second wavelet condition; it must hold if the scaling/wavelet system is

ortho.,ormal. Performing a discrete Fourier transform on both sides of (3.16) yields the conjugate

fillet equation of (3.5). Note that as a corollary to (3.16), we get by setting n = 0 that

S= h2 (k) (3.17)1
2-k

k

One needs only to find h such that it satisfies the two wavelet conditions of (3.15) and (3.16).

Once h is known, the sequence g is given by g(n) = (-1)l-n h(1-n). These two filter sequences

are all that are required to perform tne DVT.

3.3.2 Generation of wavelet function

In the previous section, we have shown that if the scaling function 0(t) is known, then we

can determine h and g and perform the DWT with ease. Conversely, if h is found by solving the

two wavelet conditions, then we can generate 0(t) and W(t) recursively. The construction is as

follows. Using (3.13) with m = 0, we get the fundamental recursive equation for the scaling

function 4)t):

0(t) = 2 1 h(n) 0(2t-n) (3.18)
n



_ 'IIII111_ _ ' _

1 8

Assuming that h = [h(O), h(l), h(2), h(3) ....... h(M-1)], i.e., the h sequence has finite length,
so that 0(t) has a compact support on [0, M-1I, i.e., qp(t) is non--zero on this compact interval. We

first find the values of 4<t) on the integers; this is done by using (3.18) to set up the following

matriA equation:

h(O) 0 0 0 0 • 0 0 0 1
h(2) h(l) h(O) 0 0 * • 0 0 0

- -)h(4) h(3) h(2) h(1) h(O) - • 0 0 0 - -

0(1) * h(5) h(4) W(3) h(2) • • 0 0 0 0(1)
0(2) • * • h(5) h(4) * * h(l) h(O) 0 0(2)

• l b • h(3) h(2) h(l)

"* =2 h(M-2) * • * * * h(5) h(4) h(3)

" 0 h(M-1) h(M-2) * • a 0 • h(5)
* 5

* 0 0 0 h(M-1) h(M-2) * * 5 * 5

o o 0 0 0 * * • *
L J(-l _ O(M- 1)_

0 0 0 0 0 • • h(M-1) h(M-2)

L0 0 0 0 0 * • 0 0 h(M-1)

(3.19a)
for even M, and
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h(0) 0 0 0 0 0 * 0 0 0

h(2) h(W) h(0) 0 0 0 • 0 0 0

0(0) h(4) h(3) h(2) h(l) h(0) 0 * 0 0 0 - -

0 h0)) h(5 h(3) h(2) (1) * 0 0 0 0(l)

0(2) h(S) h(4) h(3) - h(0) 0 0 0(2)

• • • * h(2) h(1) h(0)

* =2 htM-l)h(M-2) - * • • h(4) h(3) h(2)
* 0

* 0 0 h(M-I) h(M-2 ) * • * • h(4)

* 0 0 0 0 h(M-1) h(M-2) • •

0 0 0 0 0 - * .. (M- 1) _ 4(M-I)-
0 0 0 0 0 * * h(M-1) h(M--2) *

o 0 0 0 0 0 0 0 h(M-1) I

(3.19b)

for odd M. In general, solving (3.19a) or (3.19b) is equivalent to finding the eigenvector

corresponding to the eigenvalue X = I of the matrix A given in below:

S= A (3.20)

We may impose the additional condition on 0 that I 0(n) = 1. When the matrix A has zero
ni

determinant there can be multiple X = I solutions to (3.20). Once we know the values of 0(t) on
1

the integers, we car. compute its values on the ý-integers by using the fundamental recursion of

(3.18) as follows:

0( - 2 j1 h(n) 0(k-n) (3.21)n

11 1

and so-forth for on the 41 6' 32-....integers, recursively. Thus, the scaling function 0(t),

which has support on the compact time interval [0, M-l], can be determined explicitly for t being a

dyadic number. Since the dyadic numbers (i.e., multiples of 2 -k, for all k Ž 0) are dense in JR, the

function 0(t) can be determined at all times t in the limit.
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The wavelet function W(t) is similarly computed as follows. Since y1(t) e W0 C V), wc

can represent yv(t) as a linear combination of the basis functions of Vi:

W(t) = I < -(t), 21/2 ý(2t-n) > 21/'2 0(2t-n)
n

= 2 1 g(n) 0(2t-ri) (3.22)
n

which is a recursion similar to (3.18). Since we already know 0(t) on the dyadic numbers, it

follows that w(t) can be computed using (3.22). Tle filter sequence g is a flip-alternate-negation

of h, and we can set g = [g(0), g(l), g(2) .......... g(M-1)] so that w(t) also has a compact

suppor on the time interval [0, M-l].

At this point we have shown how to generate W(t) for the CWT. The question is: How do

we find h(n) in the first place? Although one may guess or even trial and error to find a b
sequence that satisfy the two wavelet conditions, in reality it is a difficult task to find a

scaling/wavelet pair that has nice analytical properties. Nonetheless, several researchers have

succeeded in systematically generating wavelet functions. We show some of their work in the

following.

3.3.3 Compactly supported wavelets examples

First of all, the simphcst compactly supported wavelet is the Haar wavelet. It has a compact

suppora on [0, 1), with h = [1/2, 1/2] and g = [1/2, -1/2). The Haar scaling/wavelet pair is shown

in Figure 3.4.a. Note that the functions are not continuous.

Daubechies [21 has proposed a class of coimpactly supported orthonormal wavelets and she

gave the hs for M = 4,6,8,10,12,14,16,18,20. For example, the Daubechies 4-coefficient wavelet

has h = [h(0), h(l), h(2), h(3)] given by:

h(O) = 8 ' h(l) - 8
3-8

h(2) = 34-3 h(3) 1-03 (3.23)

Pllfi8 811 i ll'iPIll l~l IlpII l lil IiI1I l II r Fl II



21

Note that h(0)+h(1)+h(2)+h(3) = 1, and h2(0)+h 2(1)+h 2(2)+h 2(3) = 1/2, Substituting h into

(3 19) we find the eigenvector for X = I to be

[0(0), 0(1), 0(2), 0(3)] = [0, 1.366, -0.366, 0] (3.24)

The corresponding scaling function 0(t) and the wavelet function NI(t) (D4) are recursively

computed, using (3.18) and (3.22), respectively, and they are plotted in Figure 3.4.b We also

shov he Daubechies 10-coefficient scaling/wavelet (DIo) pair in Figure 3.4.c and the 20-

coefficient scaling/wavelet (1320) pair in Figure 3.4.d Observe that D20 looks like a modulated

Gaussian. Also note that the Daubechies wavelets are increasingly smoother in time and better-

contained in the frequency spectrum.

Pollen [ 19] has shown that it is possible to parametrize compactly supported wavelets. In

particular, for M = 6, using a pinched torus, he was able to give a parametriztion of the h sequence

as follows:

h(O) = [(] + cos ax + sin cx)(I - cos - sin 13) + 2 sin 13 ces (x 1/8

h(l) = [(1 - cos oi + sin a)(l + cos 13- sin 13) -2 sin 13 cos a 1/8

h(2) = [1 + cos (a-13) + sin (x-13)]/4

h(3) = [1 + cos (a-13) - sin (ox-13)]/4

h(4) = [I -- h(O) - h(2)1/2

h(5) = [I - h(1) - h(3)]/2 (3.25)

wb-re -t <5 a, 13 < t are the two parametrizing angles. It is indeed a very nice and important

result. As an example, the Haar waveiet has parametrization a = 13, for any (x. As another

example, we randomly generate ot - 0.2172 and 13 = 0.3359 and use (3.25) to obtain

h = [0.0055, -0.0322, 0.4686, 0.5278, 0.0259, 0.0044]. (3.26)

It turns out that this is a valid wavelet sequence; we carry out the recursive generation and we plot

the resulting scaling function and wavelet function in Figure 3.4.e. This wavelet has dual

passbands. Note that the scaling function and the wavelet function are orthonormal basis

functions. One can experiment with (3.26) to generate very crazy looking wavelet functions.
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• (t) 41(t)

! 1

0 1 1/2 1

-1 3c

Figure 3.4.a The Haar scaling function and wavelet function.
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phi(t) PSD phi (t)

1.5 •1.5

0.5

0.5.

-0.5- 0 ...
0 1 2 3 -10 -5 0 5 10

xi(t) PSD xi(t)

F 0.6

0'. . 0.4

-1 0.2

-2
0 1 2 3 -10 -5 0 5 10

time freqLuency

Figure 3.4.b Daubechies 4-coefficient (D4 ) scaling function and wavelet function,
apd their energy spectra.
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phi(t) PSD phi(t)
1.5 -- 0.

1 0.8

0 0.2

-0.5 -.. 0 ... . .. .
0 5 10 -4 -2 0 2 4

xi(t) PSD xi(t)

1.5 1

1 0.8-

0.5 0.6-

0 0.4-

-0.5- 0.2-

-1 0+-o-,
0 5 10 -4 -2 0 2 4

time frequency

Figure 3.4.c Daubechies 10-coeff-cient (DIo) scaling function and wavelet function,
and their energy spectra.
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phi(t) PSD phi(t)
1 i-, . . 1.5

0.5 1

0~f / 0.5-

-0.5 - --.. . .. 0 . .. .
0 5 10 15 20 -4 -2 0 2 4

xi(t) PSD xi(t)
1 1

0.5. 0.8-
0 f0.6

-0.5 0.4

-1 0.2-

-1.5 0 -
0 5 10 15 20 -4 -2 0 2 4

time frequency

Figure 3.4.d Daubechies 20-coefficient (D20) scaling function and wavelet function,
and their energy spectra.
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phi(t) PSD phi(t)
10- 2

0 • 1.5
5.

0
0.5.

-5 1
0 2 4 6 -4 -2 0 2 4

xi~t) PSD xi(t)

10 6

5
4

0

-5. j

-10 '0 -
0 2 4 6 -4 -2 0 2 4

time frequency

Figure 3.4.e A 6-coefficient scaling function and wavelet function with Pollen
parametrization (x = 0.2172, j = 0.3359, and their energy spectra.
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3.4 Multiple-Phase Discrete Wavelet Transform

In digital signal analysis, what one has at hand is a sequence of N samples, x(nT), where T

is the sampling period and n = 0, 1, 2, ... Ns-i. It is conve-ijent to consider an auxiliary function

xo(t) in V0 : xO(t) = I bO,n 40.n(t) by setting b0 ,n = x(nT) at resolution level 0, which is the
n

highest level available. Using a recursive filtering algorithm, the so-called discrete wavelet

transform (DWT) of section 3.2, one can compute the lower-level resolution coefficients as (Fig.

3.3):

bm-i(i) = Y 4-2 h(k) b1m(2i + k)
k

dm.j(i) = 1 \J2 g(k) bm(2i + k) (3.27)
k

foi m = 0, -1, -2, -3 ..... Here, h = [h(-M+2), h(-M+3), . . . , h(0), h(l) ] and g = f g(-M+2),

g(-M+3), .... , g(0), g(l) ] are the appropriate conjugate-quadrature discrete-time filter responses.
00

The h coefficients are obtained by the dilation equation h(k) = J 0(t) 0(2t - k) dt. We have set
-00

g(k) = (-1)-M+3"k h(-M+3-k) so that the time indexes for the b's and d's are always non-negative.
We also assumed that both 0 and % have compact supports so that h and fg have only finite number

of filter taps ( = M). Roughly speaking, the approximation coefficients bm,n capture the

approximate information in the signal sequence at resoiution level m, while the difference

coefficients dm,n retain the detail information going from resolution 1evei m - 1 to m. The DWT

has important applications in signal analysis, particularly in compression, detection, and
classification. The choice of 0 and y (hence h and g) is such that the signal is localized as much as

possible in both time and frequency. Unfortunately, the DWT is not time invariant. If the signal

sequence is time-shifted by one unit to become b = [ 0, b0,0, bo, I, bo,2 . . . . . . ., bO,N.- I ] then the

corresponding DWT is not time-shifted and it will be completely different from the old DWT. This

will not present a problem to the reconstruction of the signal sequence; however, the merits of

DWT for signal detection and classification may be diminished.

We note that for dyadic DWT, there are two different sets of DWT et each level; we name

them as "phase-0" and "phase- 1" decompositions. Referring to Fig. 3.5, for phase-0

decomposition, the 0-th coefficient at resolution level m - I is [h(1)] [ Ibm,O], the 1-st coefficient is

[h(-l), h(0), h(l)J * [bimO, bmj, bmn21 where "." denotes dot-product, the 2-nd coefficient is
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[l(2). h(-1), h(O), h(l)] [b• , • ,,,;2, brn,3, bm,4], and so forth. On the other hand, the phase-I
coefficients will read as [h(O), h(l)] • [binO, b. 1 j], [h(-2), h(-I), h(O), h(l)] • [bin,(, binl, bin,2,
bm. 3], [h(-2), h(-1), h(0), h(l)] 9 [bi, 2 , bin, 3, bn. 4 , bm, 5].....

m,0 IbmI b.. 2  bin.13  bm, 4 I ý, 5 I Y,6 bin,

"phase-0"

h-)Ih(-Il) h(O) I h(l) I shift two units each timeEli
"phase- I"

h(-2) h(- 1) 1h(O) I h--)- 0o. shift two units each time

Figure 3.5 Two phases of wavelet decomposition.

We have proposed a multiple-phase DWT (MP/DWT) for signal analysis [10], [14], [131. The key

to this MP/DWT is to construct new filter sequences him and gi (m 5 -1) at each decomposition

level by inserting 2-(m+ 1) - I number of zeros between every two subsequent filter coefficients.
The MP approximation coefficients at level m- 1, time indexed i, is given by the dot product of hi

and bm. where is the MP approximation coefficient sequence at level m denoted by n =

(b 0 , b, b 2 . . . . . .. ). Specifically, we have
. ' M,'b ,

bm-ini = 42 hm(k) bm,i+k.!

k= -M+2-(M-I)(2-n-1)

and
I* '

dmili = 2 ~2igm(k) b'i~k (3.28)

k= -M+2-(M-l)(2" m -I)

The manner that the phase-0 and phase- I : -vfficients are interleaved at each level may be described

by the tree diagram shown in Fig. 3.6. For a k-level decomposition, there are altogether 2 k
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possible phases of decomposition. Each path in the tree of Fig. 3.6 represents an unique phase-

sequence. One may choose to decompose the signal along any one of these 2k phase-sequences
and obtain a different DWT. Interleaving all of them yields our MP/DWT. Note that knowing the

phase-sequence, one can trace back in the tree and reconstruct the signal from the DWT. Note that
MP/DWT is a redundant transformation. It may be regarded as a d,;•crete approximation of the

continuous wavelet transform for xo(t). Its time-invariant property may be useful for some signal
detection problems. The MP/DWT can be used to detect PSK signals, but we shall report the

results elsewhere. For data compression applications, one can maximize the data compression

ratio by optimizing over the 2 k phase-sequences.

0 1

00 10 01 11 2

000 100 010 110 001 101 011 111

Figure 3.6 Different phases of wavelet decomposition.
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4. DETECTION OF PSK SIGNALS

We now use the CWT of (2.1) to analyze PSK signals. Viewing the CWT in a time-scale

plane, we attempt to identify qualitative and quantitative features that would reveal the exact

occasions of the phase shifts. First, we consider a basebad rectangular wave and its noisy
versions. Next, we analyze a 180' phase shift in a sinusoid and its noisy versions. Haar,

Daubechies, and complex modulated Gaussian wavelets will be employed in the decompositicons.

4.1 Rectangular Wave

4.1.1 Haar wavelet

A baseband rectangular wave and its CWTs using the Haar wavelet are shown in Figure

4. l.a. The rectangular wave signal has a normalized duration of 1 second. The signal sequence

x(nT) has length equal to 65 and it changes sign at n = 9, 25, 41, and 57, which corresponds to t
nT = 9/64, 25/64, 41/64 and 57/64 seconds, respectively. The Haar wavejet Y(t) = No(t) was

shown in Figure 4. l.a. The transforms CWx(nT, 2--M) is computed using (2.1) for n = 0,1,..
. ,64, and m = 0, 1, 2,. .... 6; they are shown in sequential order in Figure 4. l.a. Note that

there are some end effects due to the finite signal window and we woi,!d ignore these enj effects.

At low level of decomposition, i.e., m = 0,1, or 2, the CWT has good frequency resolution and

we see that the oscillating frequency of the signal is revealed. At higher level of decomposition,

the time resolution is getting better and the CWT reveals the sign change instances with increasing

accuracy. Specifically, at m = 6, a positive "spike" in the CWT shows a +1 to-1 sign change,

and a negative "spike" shows a -1 to +! sign change. The Haar wavelet is matched to the sign

change so the good time resolution is expected. However, at high time resolution, the wavelet
filter has large bandwidth. When there is noise, a lot of ikoise energy will be collected and the

signal CWT will be smeared, as we will show in the next figure.

We add noise to the rectangular wave and show the CWTs in Figure 4.1 .b and 4.1 .c.

Power of the signal sequence is E(x2(nT)) = 1. The random noise sequence is Gaussian with

mean zero and variance s2. Define the signal-power to noise-power ratio as:

SNR = si-gnal sequence power (4.1)noise sequence power
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In Figure 4.1.b, the SNR is 10dB and in Figure 4.l.c the SNR is 5 dB. We see that the t ow level
CWTs are not severely affected so we still have gcxod frequency resolution. At higher level, th-

CWTs are increasingly smeared by the noise, especially at m = 6. This is because the output

signal-power to noise-power ratio, SNRo, defined by:

SNRo -Ftered signal sequcnce power (4.2)filtered noise sequence power

is decreasing exponentially with m. Note that the wavelet filter (with impulse response 4m(t)) has
bandwidth B = 2e2m o0 and so the filtered noise power is increasing exponentially with m for

wideband noise. The filtered signal power, however, will decrease with m Eince the r.m.s. center
frequency of the wavelet filter is moving towards f = +o- and smaller and smaller amount of signal

energy will be collected. If the signal is a wideband spread-spectrum signal instead of a
narrowband signal, then it is possible that SNRo will remain large for many levels of
decompositions. This suggests that WT is suitable for detecting spread-spectrum signals.

For SNR = 10 dB as in Figure 4. L.b, one can observe from the CWT at m = 4 and m =6
that there are 4 sign changes. However, when one attempts to pinpoint the exact times of

occurrence by viewing the CWT at m = 6, only the changes at I = 9/64 and 41/64 can be locaited
with confidence.

For SNR = 5 dB in Figure 4.1 .c, the noise power is too much for the CWT to reveal good
time-resolutions. Only the oscillating frequency of the rectangular wave can be revealed. The

Haar wavelet does not work well in noise because its poor spectral properties, i.e., its spectrum

decays too slow and has too many sidelobes.
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signal CWT, level 2^-3

1 50-

-1 I . l-50 -___________________

0 0.5 0 0.5 1

CWT, level 2A) CWT, level 2A-4

10 20

0 _
-1 0 . .. . . . -2 0 -'"

0 0.5 1 0 0.5 1

CWT, level 2^A1 CWT, level 2A-5
50 -10 -_ ___

0 0

-50 -__ -_- -10 ___ _____

0 0.5 0 0.5 1

CWT, level 2A-2 CWT, level 2A_6

-50 ... . 5 ...0 0

-50 -5-___:k____-
0 0.5 10 0.51

time

Figure 4.1,a CWT of rectangular wave with Haar wavelet. No noise.
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signal CWT, level 2A-3
2 0o
0 0

-2 -- 50
0 0.5 1 0 0.5 1

CWT, level 2T0 CWT, level 2^-4
10 -' -20 -___- -_ _

0 0

-10 -20
0 0.5 1 0 0.5
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0 0.5 1 0 0.5

CWT, level 2A-2 CT, evel 2A-6
50 ]- 5----

-50 -_ _ _ _ -- 5 i - -
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Figure 4.1 .b CWT of rect*angula~r wave with A1aar w' velet. SNR = 10 dl?.
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signal CWVT, level 2^-3
5 501

05-5

00.5 1-0 0.51
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-20 - -20-

0 0.5 10 0.51
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0 0.5 1 0 0.5
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o 0

0 0.5 1 0 0.51
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Figure 4.1.c CWT of rect-angularw~ave with flaar wavelet. SNR =5dB.
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4.1.2 Daubechies wavelet

Daubechies wavelets have better frequency properties than the Haar wavelet. However,
they are not matched (in time) to the sign change in the rectangular wave. We show the CWTs for

the rectangular wave with Daubechies 10-coefficient wavelet (DI0 ) in Figures 4.2.a, 4.2.b, and

4.2.c for the noiseless, SNR = 10 dB, and SNR = 5 dB cases, respectively. The wavelet is first

normalized in time so that it is confined to the interval [0, 1] at level m = 0.

When there is no noise, the Daubechies wavelet is also capable in locating the sign changes
with high time-resolution as shown in Figure 4.2.a. Furthermore, because its frequency spectrum

is more confined than the Haar wavelet, the CWT at low level reveals the oscillating frequency of

the rectangular wave with greater resolution.

When SNR = 10 dB, the performance is worse, as shown in Figure 4.2.b. At levels m = 3

and m = 4, it is possible to idendfy the first and the third sign changes correctly, just as in the Haar

case. But there is a false indication around t = 0.4. When SNR = 5dB, this Daubechies wavelet

is seen to perform not much better than the Haar wavelet, as shown in Figure 4.2.c.

The problem with both Haar and Daubechies, as well as other unmodulated wavelets is that
they are not turnable. It is difficult to select or "customize" the passband center frequency for a

specific signal, thereby the wavelet filter may miss most of the signal energy. It is also not

possible to have a relatively narrow bandwidth at high frequencies. The complex modulated

Gaussian wavelet is capable to alleviate these shortcomings.
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signal CWT, level 2A-3
0.2

0 0. 00.1

CWT, level 2^0 CWT, lvl2-

0 0.5 1 0 0.5 1

CWT, level 2A1 CVVT, level 2^A5
5

0 0.5 1 0 0.5 1

CWT, level 2A-2 x 10.12 CWT, level 2A-6

0 0.5 1 0 0.5 1

time

Figure 4.2.a CWT of cectangular wave with Daubechies l(•coefficient wavelet.
No noise.
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signal CWT, level 2A -3
2 -l0.2

0t "ý- r 0
-2 -. 4-'-.

0 0.5 10 0.51

CWT, level 2A0 CWT, level 2A -4

0 0.5 10 0.51
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-2 L -21
0 0.5 10 0.51
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-1 -2

0 0.5 10 0.51
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Figure 4.2.b CWT of rectangular wave with Daubechies 10-coefficient wilvelet.
SNR = 10 dB.
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signal CWT, level 2^-3
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Figure 4.2.c CWT of rectangular wave with Daubechies 10-coefficient wavelet.
SNR = 5 dB.
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4.1.3 Complex modulated Gaussian wavelet

By changing the modulating frequency, fy, of the complrx modulated Gaussian wavc let,

one can place the wavelet passband center frequency practically anywhere on the positive
frequency axis. Changing fW, as well as a, in (2.10) gives us two extra dimensions to expose the

signal features. Although there may be a lot of redundancy, this approach essentially gives us a

tunable, variable-bandwidth multiresolutional analysis of the signal. It is also possible to adapt the

analysis to different types of signal and noise.

For simpler presentation, we fix ay = 0.12 and only vary fy to be 4, 8, and 16 Hz. For the

noiseless case, we show the corresponding time-scale decompositions (which are complex valued)

in Figures 4.3.a - 4.3.1 The first three figures depict the magnitudes of the CWTs, while the last
three figures show the phases of the CWTs. Consider the magnitude plots in Figures 4.3.a, 4.3.b,

and 4.3.c. There are altogether 3x7 = 21 snapshots of the wavelet filtered rectangular wave. Each

set of 7 snapshots start with a different center frequency fiv and the filter banks scan the frequency

axis as m increases from 0 to 6. Most of these 21 magnitude plots do correctly reveal the sign

change times (with different timc-resolutions) and would be useful in the ncisy cases. The phase

plots in Figures 4.3.d, 4.3.e, and 4.3.f confirm the sign change times, and in addition they also

reveal the polarity (+ to - or - to +) of each cha, ige. Note that when there is noise and the

magnitude plots are not conclusive, we can consult the phase plots for a confirmation. This

alternative source of information is not available in decompositions using real wavelets.

For the case when SNR = 10 dB, we show the magnitude plots for f# = 4, 8, 16 in
Figures 4.4.a, 4.4.b, and 4.4.c. In Figure 4.4.b at m = 6, the magnitude plot of the CWT clearly

indicate that there are sign changes at the four correct instance, although it addition there is a

possible false indication at t - 0.4. Figure 4.4.a at m = 3, 4, and 5 confirm that the findings are

due to the signal but not the noise. Note that in Figare 4.4.c, the magnitude plots are not

informative and certainly are not conclusive; the choice of fw = 16 is too large for this particular

signal.

When SNR = 5 dB, we show one set of magnitude plots of the CWT in Figure 4.5 with f,
- 8. At level m = 6, the CWT reveals correctly the first, second, and the third sign change,

probably misses the forth one and falsely add one at t - 0.4. The results can then be referenced

with other magnitude plots using a different modulating frequency. Comparing with the Haar ard

the Daubechies wavelets, the performance of the complex modulated Gaussian is better, especially

in the noisy cases.
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signal CWT, level 2A-3
2 - - -

0 0.5 0 0.5
time

CWT, level 2"0 CWT, level 2A-4
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0 0.5 1 0 0.5

CWT, level 2A-2 CWT, level 2A_6
-~ 0.04

20.02 .... 1

0 0-
0 0.5 1 0 0.5

Figure 4.3.a Magnitude of CWT of rectangular wave with complex modulated
Gaussian wavelet. = 0.1 2, fW 4. No noise.
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signal CWT, level 2A-3

- I ~ ~~0.:5W,~vlA

0 0.5 1 0 0.5
time
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4 0.4
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0 0
0 0.5 1 0 0.5

CWT, level 2A-2 X 10 CWT, level 2A-6

0.5 1 2 4
0 0
0 0.5 1 0 0.5

Figure 4.3.b Magnitude of CWT of rectangular wave with complex modulated
Gaussian wavelet. a = 0.12, fW = 8. No noise.
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signal CWT, level 2A-3
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time
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0 0.5 1 0 0.5 1

CWT, level 2A-2 X 10-5 CWT, level 2A_6
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0.2 'Aj A A A

0 0.5 1 0 0.5 1

Figure 4.3.c Magnitude of CWT of rectangular wave with complex modulated
Gaussian wavele!. y = 0.12, f = 16. No noise.
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signal CVVr, level 2A-3
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timeCWT, level 2A0 CWT-, level 2^A-4

200 200

"o. 0

-200-- -200
0.5 1 0 0.5

CWT, level 2^A1 CWT, level 2A-5
200 200

0 0

-200 -200
0 0.5 1 0 0.5

CWT, level 2A -2 CWT, levei 2A_6

200 200

0 j] vpj \J fp 0 _ _ _ _ _ _

-20-200- i
0 0.5 1 0 0.51

Figure 4.3.d Phase of CWT of rectangular wave with tc,.)mplex modulated
Gaussian wavelet. o = 0.12, fW = 4. No noise.
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signal CWT, level 2A-3
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0 0.5 1 0 0.5 1

time
CWT, level 211) CWT, level 2A-4
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200 -1__________
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Figure 4.3.e Phase of CWT of rectangular wave with complex modulated

Gaussian wavelet. r = 0.12, fW, 8. No noise.
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signal CWT, level 2A-3
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-1 -200
0 0.5 0 0.5

time
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0 0
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CWT, level 2A -2 CWTr, level 2A_6

-200 -200
0 0.5 1 0 0.5

Figure 4.3.f Phase of CWT of rectangular wave with complex modulated

Gaussian wavelet. a = 0.12, fW = 16. No noise.
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signal CWT, level 2A-3

-2 2 _ _ _ _ __ _ _ _ _S0 1

-2 0----0
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time
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Figure 4.4.a Magnitude of CWT of rectangular wave with complex modulated

Gaussian wavelet. c- = 0.12, f, = 4. SNR = 10 dB.
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signal CWT, level 2A-3
2 0.4

0 " 0.2
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Figure 4.4.b Magnitude of CWT of rectangular wave with complex modulated

Gaussian wavelet. a = 0.12, fW = 8. SNR = 10 dB
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signal CVVw, level 2A-3

21- 0.2 -1
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Figure 4.4.c Magnitude of CWT of rectangular wave with complex modulated
Gaussian wavelet. a = 0.12, fW = 16. SNR = 10 dB.
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signal CWT, level 2A-3
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0 - 0
0 0.5 1 0 0.5 1

Figure 4.5 Magnitude of CWT of rectangular wave with complex modulated
Gaussian wavelet. a = 0.12, f, = 8. SNR = 5 dB.
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4.2 180" phase shift

The signal zo be analyzed is now changed to a sinusoid with a 1800 phase shift at t = 0, as

shown in the first subplot of Figure 4.6. We use the Haar, Datibechies 10-coefficient, and the

complex modulated Gaussian wavelets to analyze this signal and plot their CWTs in Figures 4.6,

4.7, and 4.8, r,-spectively. For the Haar wavclet, the phase change also appears as a phase change
in most of the CWTs as shown in Figure 4.6. The Daubechies wavelet does a better job in

identifying the phase change, as shown in Figire 4.7. The complex modulated Gaussian wavelet

also reveals clearly the phase shift in the magnitude plots of the CWT at m = 4 and m =5, in

addition a phase change is confirmed by m = I and m =2 plots, as shown in Figure 4.8.

When there is noise., we found that both the Haar and Daubechies wavelets failed to

perform.

When SNR = 10 dB (note that the signal power is equal to 0.5), we choose a = 0.12 and

f, = 12 for the complex modulated Gaussian and show the magnitude and phase plots in Figures

4.9.a and 4.9.b. In Figure 4.9.a, the magnitude plot of the CWT at m = 2 reveals a phase shift

activity somewhere on or before t = 0.5. (Note that there is an end-effect in the DWT due to finite

signal window.) But the rest of the magnitude plots fail to pinpoint a better time location. When

we consult the phase plots as shown in Figure 4.9.b, the m = 6 plot suggests that there is an

atrupt change of phase at t = 0.5. This is confirmed by the m - 3 and m = 6 phase plots in Figure
4.9.c, where we use a different fW = 16.

When SNR = 5 dB, we cnoose o= = 0.12, f, = 8. The magnitude subplot for m = 2 of

Figure 4.10.a reveals some phase activities; however, the other magnitude subplots and the phase

plots of Figure 4. 1O.b yield no confirmative information. letection of a single phase shift is very

sensdtive to the noise. However, when the signal window is much longer and more phase shifts

are present, the complex modulated Gaussian would perform due to a larger output signal-powe-r to

noise power ratio (SNRo, see (4.2))
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signal CWT, level 21-3
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0-10[ -2-_____________
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Figure 4.6 Magnitude of CWT of 180" phase shifted sinusoid with Haar
wavelet. No noisc.
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Figure 4.7 Magnitude of CWT of 180" phase shifted sinusoid with Daubechies

10--coefficient wavelet. No noise.
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Figure 4.8 Magnitude cf' CWT of 180" phase shifted sinusoid with complex

modulated Gaussian wavelet. o = 0.12, fW = 8. No noise.
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signal CWT, level 2A-3
2 0.4f _ _

o_ __ _ 0.2-J
-2 0

0 0,5 1 0 0.5
tim6

CWT, level 2110 CWT, level 2A-4
4 2 >N, 

0.2 F

0 0.5 1 0 0.5 1

CWT, leve! 2*-1 CWT, level 2A-5

0 11

0.5-0 0.5 1 0 0.5 1

CWT, level 2A-2 X 10"S CWT, level 2A-6
04 1 2

0.2 _1[jA V ~J

0 0
0 0.5 1 0 0.5 1

Figure 4.9.a Magnitude of CWT of 1800 phase shiftc,d sinusoid with complex

modulated Gaussian wavelet. o = 0.12, fy = 12. SNR = 10 dP.
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Figure 4.9.b Phase of CWT of 180" phase shifted sinusoid with complex

modulated Gaussian wavelet. a = 0.12, fw = 12. SNR = 10 dB.
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Figure 4.9.c Phase of CWT of 180" phase shifted sinusoid with complex
modulated Gaussian wavelet. a = 0.12, fW = 16. SNR, = 10 dB.
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Figure 4.10.a Magnitude of CWT of 180' phase shifted sinusoid with complex

modulated Gaussian wavelet. y = 0.12, f•/= 8. SNR = 5 dB.
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Figure 4.10.b Phase of CWT of 180' phase shifted sinus)id with complex

modulated Gaussian wavelet. T = 0. 12, " - 8. SNR = 5 dB.
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5. CONCLUDING REMARKS

Wavelet decompositions have better time-resolution at higher frequencies. They have
better frequency-resolution at lower frequencies. Wavelet decompositions are suitable for
analyzing signals that have high-frequency short pulses and/or low-frequency long pulscs. The
discrete wavelet transform (DWNT) is primarily useful for data compaction, although we have found
some of its potentials in signal detection. The continuous wavelet transform (CWT) can be used in
signal detection. We have shown that by using complex modulated Gaussia~n wavelets, the time
and frequency features of a signal can be revealed via a tunable, variable-bandwidth,
multiresolution analysis. We have shown that CWT can be used in detecting PSK signals.
However, the perl'ormance is sensitive to the level of noise.
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